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Abstract

Understanding of human visual perception has histori-
cally inspired the design of computer vision architectures.
As an example, perception occurs at different scales both
spatially and temporally, suggesting that the extraction of
salient visual information may be made more effective by
paying attention to specific features at varying scales. Vi-
sual changes in the body due to physiological processes also
occur at different scales and with modality-specific charac-
teristic properties. Inspired by this, we present BigSmall, an
efficient architecture for physiological and behavioral mea-
surement. We present the first joint camera-based facial ac-
tion, cardiac, and pulmonary measurement model. We pro-
pose a multi-branch network with wrapping temporal shift
modules that yields both accuracy and efficiency gains. We
observe that fusing low-level features leads to suboptimal
performance, but that fusing high level features enables ef-
ficiency gains with negligible loss in accuracy. Experimen-
tal results demonstrate that BigSmall significantly reduces
the computational costs. Furthermore, compared to exist-
ing task-specific models, BigSmall achieves comparable or
better results on multiple physiological measurement tasks
simultaneously with a unified model.

1. Introduction
Human visual perception occurs at both coarse and fine

scales. Attending to coarse spatial scales enables a quick
estimate of the input to activate scene schemas in memory,
while attending to fine information allows for further re-
finement [38]. Motion perception is biased towards slower
temporal motions that are more likely to occur in nature
than faster ones [47]. Many machine learned models are
able to leverage relationships along both spatial and tem-
poral axes when being trained to solve visual tasks. How-
ever, explicitly constructing networks that take advantage of
different scales can still be effective [15, 6]. For example,
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Figure 1. Overview of the Proposed BigSmall Model. We
present the first joint facial action, cardiac, and pulmonary mea-
surement model from video. By leveraging a dual-branch archi-
tecture with wrapped temporal shift modules we achieve strong
accuracy with an efficient multi-task implementation.

SlowFast the [15] network uses a two branch architecture in
which each branch models different temporal scales. While
achieving strong results on action recognition, this architec-
ture has the added advantage that the channel capacity of
the fast branch can be reduced, leading to efficiency gains.

Multi-scale learning of this type has garnered attention,
in part due to inspiration from neuroscience and neuromod-
ulatory systems [33]. Neural networks are often highly ef-
fective for specific tasks, but poor at generalizing across
tasks or adapting to different domains [50]. Novel multi-
scale approaches which can capture the latent hierarchical
structure in sequences offer attractive properties and the po-
tential to generalize across tasks [6]. Global and local fea-
tures have been successfully employed in video represen-



tation tasks for creating models that perform well at image
object detection [48], sequence classification (e.g., action
recognition) [49], and fine-grained temporal understanding
(e.g., lip reading) [56].

The measurement of human physiology also requires un-
derstanding of processes with different spatial and temporal
features and dynamics. For example, facial actions (mus-
cle movements) are idiosyncratic, localized and sporadic,
whereas the human pulse is almost invariably present in
nearly all skin tissue while being highly periodic. Respira-
tion or breathing, on the other hand, lies somewhere in be-
tween, being generally periodic but occasionally irregular,
and is only measurable from certain parts of the body (e.g.,
chest or abdomen). It would seem that the optimal spatial
and temporal features for measuring these signals would
differ. However, facial expressions and cardio-pulmonary
signals do have shared properties, they are all controlled in
part by the autonomic nervous system [13], they are all mea-
sured via analysis of the body, and more specifically can be
captured through examination of the human face [30, 32].
Thus, even though the low level feature representation of
these tasks may seem dissimilar, it may be possible to con-
currently learn all these features from a single input modal-
ity, and thus suggests that shared information at some scales
might benefit performance. Despite these links, there is no
empirical evidence to validate or invalidate this hypothesis
in video measurement.

Concretely, remote measurement of the human pulse, via
photoplethysmography (PPG), leverages aggressive spatial
averaging to boost the signal-to-noise ratio of the subtle
changes in blood flow present in video pixels [36, 46]. Even
neural networks apply this considerable spatial downsam-
pling to the input frames [4, 28]. Leveraging temporal
information is very valuable with temporal models signif-
icantly out performing frame-based counterparts [53, 25,
49]. Computer vision-based facial action recognition on
the other hand requires higher spatial resolution features
and treats frames as uncorrelated. Much more modest gains
have been observed in automated facial action recognition
using temporal models.

Although computer vision based facial action and physi-
ological measurements have both received attention individ-
ually, there has been little exploration of multi-task mod-
els that predict multiple signals. This is surprising given
the clear commonalities between the two tasks: they cor-
respond to the same regions of the body (face), and there
are some correlations between the two signals, such as in
the case of emotional experiences that elicit expressions and
physiological changes [3, 12].

In this paper, we propose BigSmall, the first multi-
task neural model for disparate spatial and temporal hu-
man physiological measurements. Specifically, BigSmall
is comprised of a “Big” branch with high-resolution input

for deriving spatial texture features, and a “Small” branch,
with extremely low-resolution inputs that compress noise
from spatial features, which models temporal dynamics.
We demonstrate empirically that leveraging such proper-
ties leads to both accuracy and efficiency gains via a uni-
fied model. To reduce the compute overhead, we propose
mixed spatial and temporal scales, which leverages spa-
tiotemporal properties of branch inputs to improve compu-
tational efficiency by more than 60%. Finally, we develop
an efficient temporal modeling technique, Wrapping Tem-
poral Shift Module (WTSM) to improve temporal feature
representation, particularly when only a limited number of
frames are available. Extensive evaluations on the tasks of
vision-based facial action, respiration, and pulse measure-
ments demonstrate both improved accuracy and efficiency
of BigSmall compared to state-of-the-art (SOTA) methods.

To summarize, we make the following contributions:

• We present BigSmall, the first multi-task model for dis-
parate spatial & temporal human physiological measure-
ments, using a unified two-path spatiotemporal network.

• We propose mixed spatial and temporal scales for effi-
cient spatiotemporal modeling while maintaining accu-
racy.

• We develop the Wrapping Temporal Shift Module for ef-
fective temporal learning, especially when limited num-
ber of input frames are available.

• We evaluate BigSmall on three physiological vision tasks
across multiple real-world video-based human physiol-
ogy datasets and verify the effectiveness of BigSmall over
SOTA methods.

We release our code, trained models, and a simple in-
terface to simultaneously generate facial action unit (AU),
heart rate, and breathing rate measurements from video.

2. Background and Related Work
Multi-Scale Models. Scales in networks can take sev-

eral forms. Global representations often refer to those for
tasks such as classification or a whole video sequence,
where as local representations refer to those for detection
or localization of specific elements within video frames.
Hjelm and Backman assume that information useful for ac-
tion classification (i.e., global semantics) should be invari-
ant across space and time within a given video [19, 18].
The concept of leveraging global and local features has
drawn attention [48, 56]. Zeng et al. argue that fea-
ture representations can be learnt that generalize to tasks
which require global information and those that require lo-
cal fine-grained spatio-temporal information (e.g., localiza-
tion) [56]. SlowFast takes an analogous approach in the
temporal domain [15], using two branches to model differ-
ent frequency scales. Exploiting temporal and spatial scales
has been effective in the case of rPPG by implementing a
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Figure 2. Model Architecture Iterations of BigSmall. During our research we designed several candidate networks for multi-task predic-
tion of PPG, breathing, and facial action. These iterations are discussed in Section 3 and in Section 5.5 (ablation studies).

SlowFast transformer network [54] and leveraging global-
local spatial features [60]. However, to our knowledge prior
work has not applied these concepts to disparate multi-task
physiological measurements.

Facial Action Recognition. The Facial Action Unit
Coding System (FACS) [7, 14] decomposes facial move-
ments into muscle activations called action units (AUs).
This system of encoding features has been leveraged to
correlate facial displays to expressions of human emotion
(e.g., activation of AU6 - cheek raiser, and AU12 - lip
corner puller, together result in a smile or an expression
of happiness). Automating FACS using computer vision
has a long history due to the laborious and time inten-
sive nature of manual coding [30, 8]. Recent research has
been focused on using deep neural networks for detecting
AUs [17, 20, 1, 34]. These models are customized to the
task, and make use of high spatial resolution inputs. Ad-
ditionally, to achieve current state-of-the-art performance,
most of the published methods make adaptations to their
CNN architectures to utilize additional features for the rep-
resentation learning [10, 34, 23].

Camera-based Physiological Measurement. Measure-
ment of physiological parameters from video is possible
as light reflected from the body is modulated by several
physiologic processes [32]. Remote photoplethysmography
(rPPG) leverages subtle changes in light reflected from the
body to measure the blood volume pulse [44, 36, 46]. Su-
pervised neural networks are the current state-of-the-art for
rPPG measurement [4, 53, 52, 25, 16, 55, 54]. There are
some inductive biases that have informed the design of these

models. Firstly, since the cardiac pulse is relatively invari-
ant across neighboring skin regions, the input video frames
can be aggressively spatially downsampled. This has the
effect of boosting the pulse signal-to-noise ratio as cam-
era quantization errors begin to average out. Secondly, the
pulse signal has characteristic temporal structure and peri-
odicity, therefore implying the benefit of modeling this tem-
poral information [53, 35, 25, 26, 54].

3. Methods

3.1. Modeling Disparate Spatiotemporal Signals

We explore the challenges of learning spatially and tem-
porally disparate tasks, which are perceived at different spa-
tiotemporal scales. For instance, learning periodic physi-
ological signals, such as pulse, requires rich temporal in-
formation, relatively high frame rate, and relies on low
image resolution to filter irrelevant high-frequency spatial
noise [44, 37]. Conversely, capturing muscle activation fea-
tures, such as facial actions, demands high spatial resolu-
tion to detect subtle texture changes [29]. These activations
change more slowly meaning high temporal frequency in-
formation is less important. In fact, image-based classifi-
cation tasks benefit from training with randomized mini-
batches to maximize variance in the data and minimize cor-
relation between individual frames, further underscoring the
contrast between spatial and temporal tasks. Finally, breath-
ing, traditionally approached through spatiotemporal meth-
ods such as optical flow, can be seen as a time-varying, often
periodic task that leverages spatial information (e.g., body
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Figure 3. BigSmall Model Architecture. By mixing spatial and temporal scales and leveraging Wrapping Temporal Shifts we present an
end-to-end efficient multi-task architecture for modeling disparate spatial and temporal physiological signals.

motion). Specifically, respiration models leverage higher
spatial resolution inputs than rPPG (e.g., Chen et al. use
123×123px for respiration and 36×36px for rPPG [5]).

To address the range of temporal and spatial scales
needed to model these tasks, we propose a multi-task
model architecture named “BigSmall” with a high-spatial-
resolution branch to capture spatial texture and a low-
spatial-resolution temporal branch to capture temporal dy-
namics. We leverage spatiotemporal scales to reduce the
computation of the model, and introduce a novel and ef-
ficient technique called Wrapping Temporal Shift Mod-
ules (WTSM) to perform temporal modeling within limited
amounts of temporal information. Below we describe the
building blocks of this design and our technical contribu-
tions, which not only reduce computational costs but also
improve temporal modeling.

3.2. Big: High Resolution Spatial Branch

BigSmall’s Big branch is designed to handle tasks that
require high spatial fidelity, such as classifying facial ac-
tions. To preserve subtle facial edges and textures that
comprise many action units, a large input frame resolution
is necessary. Unlike the Small branch, the Big branch is
not concerned with modeling temporals and generally treats
frames as independent. The inputs to the Big pathway are
high-resolution standardized raw frames of size C×H×W
= 3×Hbig×Wbig. In Fig. 2A.i, we summarize the architec-
ture of the Big pathway. The large, raw frames are passed
through six convolutional layers with filter depths of [32,
32, 32, 64, 64, 64], and three average pooling layers with
dropout, one after every other convolutional layer.

3.3. Small: Low Resolution Temporal Branch

The small branch of the BigSmall model is optimized
for tasks that rely on changes between frames rather than
specific spatial details. Our proposed Small pathway lever-

ages the fact that temporal tasks require extremely low spa-
tial resolutions, which effectively filters out spatial noise.
The Small pathway receives an input image of relatively
low resolution defined by C ×H ×W = 3×Hsmall×Wsmall.
The input is provided in the form of “normalized differ-
ence frames”, where each input frame represents the differ-
ence between a frame K and the subsequent frame K + 1.
This type of input has been historically used in video-based
physiological measurement networks [4, 25] to encode rich
temporal information between adjacent time samples. In
our evaluation, difference frames encode the pulse signal as
changes in color, and motion caused by pulmonary func-
tion as edges, as shown in Fig. 2A.ii. These downsampled
difference-frames are fed through four convolutional layers
with filter depths of [32, 32, 32, 64] in sequence.

3.4. Mixing Temporal and Spatial Scales

Although a model comprised of a fused Big pathway and
Small pathway is able to learn disparate spatio-temporal sig-
nals in a multi-task fashion, it provides minimal computa-
tional benefit over separate task-optimized networks. For
example, such a multi-task network used to predict AU, res-
piration, and PPG barely improves upon the parameters and
floating point operations required to run a big spatial model
(for AU) and two small temporal models (for respiration and
PPG). Inspired by the SlowFast network [15] which models
slow and fast temporal scales in two branches, we propose
incorporating different temporal scales on top of our spatial
scales to help improve the computational footprint.

Image-based classification models generally assign tem-
poral independence between frames, as slow-changing spa-
tial features result in a lack of interesting temporal dynam-
ics. In the case of facial action, where changes occur over
seconds, AU activations stay stagnant for a number of con-
secutive video frames. Thus, such spatial tasks can be re-
framed as slow temporal tasks, where consecutive frames



are highly correlated. On the other hand, PPG estimation
and similar tasks rely on subtle changes of consecutive low-
resolution frames and thus such spatial tasks can be re-
framed as fast temporal tasks.

In BigSmall, as input resolutions of the Big branch
are far larger than that of the Small branch, compu-
tational load is dominated by convolutions in the Big
branch. The ratio of floating point operations (FLOPs)
between the Big and Small branches is approximately
(HbigWbig)/(HsmallWsmall) where H and W denote image
height and width. If Hbig and Wbig are much larger than
Hsmall and Wsmall, the computational burden of the model is
driven by the Big branch alone. To address this, we lever-
age the Big branch as a mechanism to model low-frequency
high-spatial resolution signals, while using the small branch
to model high-frequency low-resolution signals. By tempo-
rally downsampling the input frames to the Big pathway, we
reduce the number of frames passed through the Big branch
compared to the number of frames passed to the Small
branch. Specifically, we reduce the frames seen by the
Big branch to N/M frames passed to Small branch where
M ∈ Z+ > 1 is the reduction factor and N is the number of
frames in the Small branch. The comparison is illustrated in
Figs. 2C and F. As a result, we reduce the FLOPs executed
by the model by approximately M times on average for N
frames. This reduction in computational cost is particularly
useful in situations where the high-resolution input data sig-
nificantly increases the model’s computational footprint.

More specifically, the Big pathway only receives a sin-
gle frame (M=N) to predict AU activation’s while the Small
branch receives N frames branch to predict PPG and respi-
ration signals. The Big branch leverages the learned tem-
poral representation and dynamics from the Small branch
to infer minor changes in the spatial features of N frames.
Heavy reliance on the temporal pathway leads to a small
drop in performance, but with the benefit of 1/N compu-
tation cost where N is the number of frames passed to the
Small branch as well as the reduction factor.

3.5. Wrapping Temporal Shift Module

Modeling temporal dynamics and representing beyond
consecutive frames are crucial for video-based physiologi-
cal measurement tasks, as noted in previous works [53, 25].
However, the Small branch’s difference-frame inputs only
allow information sharing between adjacent frames. To ad-
dress this, Liu et al. [25] leverage the temporal shift mod-
ule (TSM) [24] instead of 3D convolution to learn efficient
spatial-temporal representation beyond adjacent frames.

However, traditional TSM suffers when the number of
input frames (N ) is low, as the proportion of zeroed-features
rises. As shown in Fig. 4, when traditional bi-directional
TSMs operate on N frame samples (indexed [1, N ]), the
first frame shifts a fold of channels right (forward in time)

A) Temporal Shift 
Modules (Bi-Di. TSM)

B) Wrapping Temporal 
Shift Modules (WTSM)

Time (N)

Channel (C)

H, W Zero 
Padding

Time Samples 
Shifted Out

Time Samples of 
Shape NxCxHxW

Figure 4. Wrapping Temporal Shift Modules. A comparison of
temporal shift modules (TSM) and wrapping temporal shift mod-
ules (WTSM). For modeling time variant signals with small win-
dow sizes, we find that WTSMs provide superior performance.

to the second frame. Since there is no previous frame, this
fold is zero-padded in the first frame. Similarly, frame N
shifts a fold of channels left (backward in time) to frame
N − 1. That fold in frame N is then zero-padded as there
is no next frame. The proportion of zeroed features in N
frames is thus 2/(3N). As N becomes small, the propor-
tion of zeroed features grows rapidly, leading to a noticeable
degradation in performance.

The problem of zero padding becomes particularly con-
cerning when N is unavoidably small due to strict latency
requirements or when low inter-frame correlation is neces-
sary for learning. In such cases, image-based classification
tasks, like AU detection, benefit from high variance in mini-
batches, which is achieved through frame randomization.
However, as consecutive video frames tend to have highly
similar spatial features and labels, using a large number of
consecutive frames as input for training reduces batch vari-
ance and, therefore, degrades the model’s performance.

To address this challenge, we propose the Wrapping
Temporal Shift Module (WTSM). In contrast to the TSM,
the WTSM fills the zero-padded channels with channels
shifted out during the temporal shift process. As illustrated
in Fig. 4A, traditional TSM shifts out a fold of channels
from both the first and last time frame, while simultane-
ously zero-padding a fold in the same frame. The WTSM
resolves the problem of zero-padded channels by wrapping
the shifted-out folds to fill the previously zero-padded folds.
The WTSM, as shown in Fig. 4B, can leverage the inter-
frame temporal benefits of TSM without increasing the pro-
portion of zeroed features when using a small N , thereby
avoiding a drop in performance. Furthermore, like TSM,
WTSM does not increase parameter or FLOP count in-
curred by the model.

It is worth noting that, unlike long short-term mem-
ory networks (LSTMs), the temporal information added by
WTSM is not dependent on time-series order. The WTSM
helps 2D convolutions learn a time-invariant mapping that
maps an input to an output relative to other input-output
pairs. As a result, shared features between non-adjacent



frames (such as the 1st and Nth frames) do not disturb
the temporal representation. Furthermore, wrapping fea-
tures, as opposed to filling from intermediate frames, best
balances the information represented for all N frames.

3.6. The BigSmall Model

By combining the techniques proposed in Section 3.1 to
Section 3.5, we present an end-to-end efficient multi-task
architecture, called BigSmall, for disparate spatial and tem-
poral signals (see Fig. 3). The proposed architecture lever-
ages a dual pathway system consisting of 1) a Big branch to
model fine-grain spatial features from raw high-resolution
inputs, and 2) a Small branch optimized for modeling tem-
poral dynamics from low-resolution difference-frames. To
achieve computational efficiency, N frames are passed into
the Small branch while only 1 frame is passed through
the Big branch. This reduction in convolutions in the Big
branch leads to a significant reduction in computation by
almost a factor of N , as computation of the Small branch is
negligible compared to that of the Big branch.

BigSmall benefits from the use of WTSM, which en-
ables robust derivation of temporal information by pass-
ing features between frames. WTSMs are placed before
convolutional layers in the Small branch and, when com-
bined with difference-frame inputs, facilitate strong inter-
frame feature mapping. This feature is particularly advan-
tageous when training alongside spatial tasks that require
high batch-variance or situations that demand low latency.
Additionally, WTSM helps to alleviate the strain put on the
temporal branch to infer missing spatial features resulting
from temporal down-sampling in the Big branch, by aug-
menting the temporal representation.

4. Experiments
We evaluate our methods on the tasks of facial action,

rPPG, and respiration. We run a series of ablation experi-
ments on the BigSmall model to highlight individual con-
tributions, and compare our model against previously pub-
lished task-optimized architectures. We train and validate
presented models using the BP4D+ dataset [57, 58, 59].

Dataset. The BP4D+, a large multimodal emotion
dataset, consists of face video (25fps) from 140 partic-
ipants (82 female, 58 male). Each participant records
10 trials, each of which is meant elicit a specific emo-
tional response: happiness, surprise, sadness, startle, skep-
ticism, embarrassment, fear, pain, anger, disgust. These
trials are labeled with the following signals: blood pres-
sure (systolic/diastolic/mean/bp wave), heart rate, respira-
tion (rate/wave), electrodermal activity. Trials 1/6/7/8 are
FACs encoded for the most ”facially expressive” portion.
We refer to the portion of the dataset with AU labels as the
AU subset (consisting of 200k frames). This AU subset is
the only portion of the dataset with concurrent AU, respira-

tion, and PPG labels. We additionally evaluated BigSmall
on two public rPPG datasets: UBFC [2] and PURE [41].
Details regarding evaluations on additional datasets are in-
cluded in the supplementary materials.

Experimental Details. Similar to [21], we use 3-fold
cross validation, training on 2 folds and testing on the third,
and report the average performance on the holdout-sets.
Due to the sparsity of AU labels and the conflicting na-
ture of the task gradients (explained in Section 5.1), net-
works are trained on folds from the AU Subset, and vali-
dated on the rest of the data from the entire BP4D+ dataset
for PPG and breathing tasks. Folds are constructed as to not
include subject overlap between train and test sets. Mod-
els are trained for 5 epochs, using video chunks of N = 3
consecutive frames, a batch of 540 frames, an Adam op-
timizer, and a learning rate of 0.001. The AU multi-label
classification task is trained using weighted Binary Cross
Entropy Loss. Respiration and PPG are trained with Mean
Squared Error Loss. The losses of all 3 tasks are equally
weighted and summed to promote equal importance during
training. We evaluate binary action unit performance on
12 commonly cited AUs [21] using average F1 and accu-
racy. PPG and breathing metrics are based on the signal
rate (beats/breaths per minute), and for each task we re-
port Mean Average Error (MAE), Root Mean Square Er-
ror (RMSE), Mean Average Percent Error (MAPE), and
Pearson Correlation (ρ). Additional information regard-
ing training, metrics, and their derivation can be found in
the supplementary material. We adapt our training pipeline
from rPPG-Toolbox [27], a toolkit to standardize rPPG deep
learning research.

BigSmall Instantiation. The BigSmall model input di-
mension are chosen to highlight the different spatial scales
of the two branches, and to further highlight the bene-
fits of reducing the computation of the Big branch. The
Big branch raw standardized input frames are of shape
C×H×W = 3×144×144. Small branch normalized differ-
ence frame inputs are of shape C×H×W = 3×9×9. The
pooling layers of the Big branch are of pool size [2×2, 2×2,
4×4], in order. These pooling sizes are chosen such that the
final convolutional output of the Big pathway matches that
of the Small pathway, in an effort to balance the feature im-
portance of the branches.

The Big and Small feature maps are combined through
upsampling of the Big output and summation in order to
prevent extremely large fully connected layers (an artifact
of concatenating the Big and Small feature maps before the
dense layers) and thus avoid additional mode complexity.
We explore the use of lateral connections and alternative fu-
sion techniques (discussed in the supplementary material),
but find for our tasks, of AU, respiration, and PPG, that
mixing high level features, or forcing the combination of
low-level features results in performance degradation. As



Table 1. Ablation Studies of BigSmall. The default BigSmall model is highlighted in gray. Best results of each column are in bold.

Model Big
Branch

Small
Branch

Temporal Shift
Mechanism

Big Branch Temporal
Down Sampling

Heart Rate Breathing Rate AU Avg. Computation

MAE RMSE MAPE ρ MAE RMSE MAPE ρ F1 Acc FLOPS (M) # Params (M)

BigSmall ✓ ✓ WTSM ✓ 2.38 6.00 2.71 0.89 3.39 5.00 16.65 0.21 43.3 67.4 154.01 2.14
BigSmall ✓ ✓ TSM ✓ 3.03 7.27 3.50 0.85 3.59 5.20 17.63 0.17 43.0 67.3 154.01 2.14
BigSmall ✓ ✓ − ✓ 2.47 6.16 2.81 0.88 3.65 5.21 17.80 0.16 40.3 62.3 154.01 2.14
BigSmall ✓ ✓ WTSM − 2.46 6.09 2.81 0.88 3.71 5.28 18.00 0.15 42.5 60.6 456.03 2.14
Big Branch ✓ − − − − − − − − − − − 45.3 73.8 451.63 0.78
Small Branch − ✓ − − 2.57 6.57 2.90 0.87 3.86 5.39 18.79 0.12 − − 3.73 0.70

Attention Masks Photoplethysmogram

Respiration

Relative Gradient Direction By Task 

Inter-Task Gradient Angle
∠AU, Resp = 106.3°
∠AU, BVP = 100.3°
∠BVP, Resp = 46.2°

A

C

D

B

BVP

AU

Resp

Input Frame Large Branch Small Branch
Attention Masks Blood Volume Pulse

Respiration

Relative Gradient 
Direction By Task Inter-Task 

Gradient Angle

∠AU, Resp = 106.3°

∠AU, BVP = 100.3°

∠BVP, Resp = 46.2°

A

C

D

B

BVP

AU

Resp

Input Frame Large Branch Small Branch

BreathingC

Time Time0 5 0 10

Figure 5. Examples Outputs. Attention masks, predicted signals,
and relative training gradients. PPG and respiration share some
gradient direction. The AU gradient conflicts with these tasks.

discussed in Section 5.1, this is due to the conflicting gra-
dients of the spatial task (AU) with the temporal task (PPG
and breathing). The combined Big and Small feature map
is passed to fully connected layers for each learned task.

To match the inputs to the BigSmall model, PPG and
respiration baseline models are fed 9×9 difference-frame
inputs, while AU baselines are trained with 144×144 stan-
dardized raw inputs.

5. Results and Discussion
5.1. Multi-Task AU and Physiological Measurement

The BigSmall model is able to concurrently learn dis-
parate spatiotemporal tasks. We show that the network en-
ables multi-task measurement of facial action units, breath-
ing, and PPG. Table 1 illustrates that BigSmall performs
comparatively to the baseline Big and Small single-task-
optimized models, while reduing the computational load
needed to run 3 task-specific models by ∼66%. Fig. 5-
A/B/C show sample attention maps from the Big and Small
branch, and PPG and respiration predicted waveforms plot-
ted against the sensor ground truth. More examples are in-
cluded in the supplementary material.

Regression in AU results, as compared to the Big base-
line, is explained by an analysis of the multi-tasked signals.
Pulse and respiration signals are known to have shared in-
formation, in that respiration frequencies can be derived
via respiratory sinus arrhythmia (RSA) [36]. Conversely,
though AU may leverage some temporal dynamics modeled

by the Small branch, the spatial feature representation is ex-
pected to share much less information with the PPG and
respiration tasks. Indeed, we verify these hypotheses by
observing the task-gradients during training [51, 43]. The
BigSmall task-gradient-vectors, calculated after the first
training epoch, are shown in Fig. 5-D. While PPG and respi-
ration signal gradients project onto each other (∠PPG,Resp
= 46.2◦), the gradients for the AU signal are much more
different (∠AU,Resp = 106.3◦, ∠AU,PPG = 100.3◦). This
gradient conflict results in a degradation of AU results.

5.2. Comparisons To SOTA Models

We compare our BigSmall model against task-optimized
models from the literature. Table 2 demonstrates that BigS-
mall is comparable to two common AU baselines [21, 22],
and illustrates the performance of BigSmall over state-of-
the-art rPPG, breathing multi-task models [4, 25], and un-
supervised methods [45, 11]. As the table shows, existing
methods are only capable of performing either the spatial
task (i.e., AU detection) or the temporal tasks (i.e., heart
rate and breathing rate) at one time. In contrast, BigSmall
enables simultaneous spatiotemporal human physiological
measurements with comparable or better performance.

5.3. Cross-Dataset Generalization

We further evaluate the generalization ability of BigS-
mall on data that were not seen during training. We com-
pare BigSmall with other baseline models which trained on
BP4D+ and tested on two public rPPG datasets: UBFC
[2] and PURE [41]. Table 3 confirms that BigSmall out-
performs the other competitors across all evaluated met-
rics with substantial performance gains. Moreover, these
improvements are consistent on both datasets, indicating
that BigSmall learns meaningful spatiotemporal informa-
tion that can generalize to unseen datasets. We also pro-
vide results for generalization to other AU datasets in sup-
plementary materials, and show benefits of BigSmall com-
pared to existing methods.

5.4. Computational Efficiency

BigSmall benefits from improved computational effi-
ciency by temporally downsampling the Big slow-spatial
signal inputs. Since convolutions of the Big inputs dom-
inate computation, temporal downsampling by a factor of



Table 2. Comparisons of BigSmall vs. SOTA Methods. BigSmall enables both spatial and temporal human physiological learning
simultaneously via a unified model. Supervised models are 3-fold cross validated on BP4D+. Best results of each column are in bold.

Method Task Type
Heart Rate Breathing Rate AU Avg.

MAE RMSE MAPE ρ MAE RMSE MAPE ρ F1 Acc

BigSmall Spatial + Temporal 2.38 6.00 2.71 0.89 3.39 5.00 16.65 0.21 43.3 67.4

Small Branch

Temporal

2.57 6.57 2.90 0.87 3.86 5.39 18.79 0.12 − −
MTTS-CAN [25] 2.86 7.19 3.27 0.85 3.88 5.54 18.88 0.11 − −
DeepPhys [4] 2.37 5.97 2.72 0.88 − − − − − −
POS [45] 10.40 19.53 9.73 0.41 − − − − − −
CHROM [11] 5.27 13.28 5.12 0.69 − − − − − −

Big Branch
Spatial

− − − − − − − − 45.3 73.8
DRML [21] − − − − − − − − 44.0 74.9
AlexNet [22] − − − − − − − − 44.2 63.1

Table 3. Evaluation on Public rPPG Datasets: UBFC [2] and
PURE [41]. All (supervised) methods are trained on BP4D+. Best
results of each column are in bold.

Method
PURE UBFC

MAE RMSE MAPE ρ MAE RMSE MAPE ρ

BigSmall 1.97 6.48 2.56 0.93 1.03 2.55 1.14 0.99
MTTS-CAN [25] 5.99 13.01 7.08 0.74 12.78 22.43 13.90 0.47
DeepPhys [4] 4.73 11.83 5.81 0.78 3.36 12.86 3.37 0.69
POS [45] 7.89 11.08 10.65 0.89 2.79 4.69 3.25 0.97
CHROM [11] 7.29 10.33 10.06 0.90 3.13 5.11 3.68 0.97

N reduces FLOPs by a factor of N . When paired with
the augmenting temporal capacity of WTSM, which does
not increase compute cost, BigSmall functions using only
a fraction of the compute required to run three standalone
task-optimized networks (BigSmall: 154M FLOPs vs Big +
2xSmall: 549M FLOPs), while producing comparable pre-
dictions as shown in Table 1.

5.5. Ablation Studies

Leveraging Scales to Improve Performance. Table 1
illustrates a 66% reduction in FLOPs in BigSmall as com-
pared to a similar model without Big input downsampling.
Interestingly, such design also enjoys notable performance
improvements over all considered metrics, indicating that
BigSmall is both computationally efficient and achieves bet-
ter multitask performance compared to other design choices
(as illustrated in Fig. 2).

Improving Temporal Dynamics. The Wrapping Tem-
poral Shift Module assists convolutional layers to better
model temporal dynamics even when consecutive input
frames are forcibly limited by latency or training conditions.
Table 1 illustrates that for an input chunk of N = 3 con-
secutive frames, BigSmall outperforms both a model with-
out temporal shift and a model using traditional bi-direction
TSM. Additionally, this demonstrates that the use of tradi-
tional TSMs, with small N , results in a high proportion of

zeroed features and thus a drop in performance. We note
that the performance of the spatial AU task improves with
the use of WTSMs, suggesting that the Small branch tempo-
ral dynamics are leveraged to infer missing spatial features
caused by temporal downsampling of Big input frames. The
ablations of BigSmall are visualized in Fig. 2.

6. Limitations and Broader Impacts
Limitations. We acknowledge several limitations of our

paper. First, the BP4D+ dataset only consists of videos
with blank backgrounds. Future work might explore more
diverse data with different backgrounds for experimenting
with BigSmall network. Moreover, we do not evaluate our
model’s performance on compute-limited platforms (e.g.,
embedded devices or micro-controllers).

Broader Impacts. Physiological sensing has a wide
range of potentially positive applications in health sensing.
However, there is also the potential for “bad actors” to use
these technologies in negative or negligent ways. There-
fore, it is crucial to consider the implications of improving
the accuracy, availability, and scalability of sensing meth-
ods of this kind. To mitigate negative outcomes, we have
taken steps to license our models and code using responsi-
ble behavioral use licenses [9].

7. Conclusion
We present the first example of a multi-task architecture

for facial action unit, pulse, and respiration measurement
from video. Our BigSmall model achieves this via an dual-
branch design which utilizes representations on different
temporal and spatial scales. The use of Big branch temporal
downsampling results in a significant compute performance
benefit. Wrapping Temporal Shift Modules assist the Small
branch in better modeling temporal dynamics and alleviat-
ing strain cause by the downsampling of the Big branch.
Finally, shared pooled representations reduce the number



Table 4. Cross-AU-Dataset Generalization. Models trained on
BP4D+, evaluated on DISFA [31]. Best results of each row are in
bold.

Metrics AlexNet
[22]

DRML
[21]

Big
Pathway

BigSmall
(Ours)

AU (F1) AU01 10.7 10.9 9.1 11.9
AU02 10.4 12.2 11.0 10.4
AU04 33.0 26.0 32.7 20.5
AU06 27.0 27.5 25.1 28.9
AU12 39.0 35.6 36.4 38.9
AU15 11.4 11.8 11.4 11.1
AU17 18.6 17.2 16.7 17.9

AU (Avg) F1 21.4 20.2 20.3 19.9
Acc. (%) 44.9 55.6 58.7 50.6

Table 5. AU comparisons of the BigSmall model vs. literature
baselines. Models trained/tested on BP4D+. Best results of each
row are in bold.

Metrics AlexNet
[22]

DRML
[21]

Big
Pathway

BigSmall
(Ours)

AU (F1) AU01 24.3 16.3 20.7 22.1
AU02 19.5 12.0 16.5 18.6
AU04 12.3 8.0 11.4 12.6
AU06 72.4 73.9 75.6 70.2
AU07 79.8 78.4 76.4 73.3
AU10 82.0 80.9 81.6 74.7
AU12 78.9 80.1 81.6 73.6
AU14 72.8 70.9 68.5 67.7
AU15 13.8 21.3 24.0 26.2
AU17 24.3 32.6 34.4 29.6
AU23 36.0 35.4 37.1 38.3
AU24 14.3 18.4 15.6 12.1

AU (Avg) F1 44.2 44.0 45.3 43.3
Acc. (%) 63.1 74.9 73.8 67.4

of parameters in the final layers of the network. We show a
model that is able to successfully and efficiently model spa-
tially and temporally disparate signals with no significant
drop in performance.

A. Appendices Overview

We include additional experiments and analysis regard-
ing the facial action unit task and model architecture and
ablation studies in Section B. Example waveforms are in-
cluded in Section C. Details of pre and post process-
ing are included in Section D and Section E. Details of
SOTA methods and datasets are included in Section F.
Code and pretrained models can be found in the attached
BigSmall SM/code folder. A video figure is also in-
cluded along with the supplementary material.

B. Additional Results
B.1. Cross-Dataset Generalization in AU

We test the ability of BigSmall to generalize to other AU
datasets, and benchmark its performance against state-of-
the-art AU methods. To do so we train BigSmall, and other
baseline models, on BP4D+, and evaluate on the DISFA
[31] dataset. We report results for AUs which exist in both
the BP4D+ and DISFA dataset. We find that BigSmall per-
forms comparatively to AU-task-optimized models in cross-
dataset generalization. These results are found in Table 4.
These results are comparable to [21] which trained with
BP4D to generalize to the DISFA dataset.

B.2. Individual AU Result in BP4D+

Individual AU results for the comparisons between the
BigSmall model and state-of-the-art AU models, trained
and evaluated on BP4D+, are included in Table 5.

B.3. Optimal Input Frame Number for Spatial Task

As detailed in the main paper, spatial task performance
degrades when trained with a high of number consecutive
frames which reduces variance in the training mini batches.
We train the AU task-optimized Big branch model using
a number of chunked data lengths to empirically illustrate
how performance degrades as the number of consecutive
frames increases. We observe that there is significant degra-
dation in AU task performance after N exceeds 9. For our
experiments we use N = 3 to highlight the abilities of
BigSmall and the Wrapping Temporal Shift Modules in sit-
uations that necessitate small N due to training or latency
considerations. This is highlighted in Fig. 6.

B.4. Fusion / Data Sharing Ablation Experiments

We explore the type of connections used to fuse the Big
and Small branches of BigSmall. These results are shown
in Table 6.

We first test the use of concatenation of the Big and
Small feature maps (as opposed to summing). Concatena-
tion of the features maps results in a negligible difference in
performance while significantly increasing the number of
parameters in the model due to large output dense layers.

We further explore the use of lateral information sharing
of high-level features between the Big and Small branches.
These lateral connection occur after the first pooling layer
of the Big branch and after the second convolutional layer
of the Small branch. We test Big-to-Small, Small-to-Big,
and bi-directional lateral connections. Big-to-Small lateral
connections temporally upsample and spatial downsample
the Big feature map to match the dimensions of the Small
branch, and then concatenate these features with the Small
branch feature map (along the channel dimension). Small-
to-Big lateral connections temporally downsample and spa-



Table 6. Ablation Studies of BigSmall Information Fusion and Sharing. The default BigSmall model is highlighted in gray. Best results
of each column are in bold.

Model Fusion
Method

Lateral
Connection

Heart Rate Breathing Rate AU Avg. Computation

MAE RMSE MAPE ρ MAE RMSE MAPE ρ F1 Acc FLOPS (M) # Params (M)

BigSmall Sum − 2.38 6.00 2.71 0.89 3.39 5.00 16.65 0.21 43.3 67.4 154.01 2.14
BigSmall Concat − 2.28 5.68 2.58 0.90 3.72 5.28 17.94 0.15 43.5 67.3 156.00 4.13
BigSmall Sum Bi-Directional 2.21 5.46 2.55 0.91 3.93 5.54 18.98 0.10 46.9 72.3 172.35 2.16
BigSmall Sum Big-To-Small 2.32 5.84 2.62 0.89 3.80 5.39 18.42 0.12 46.0 69.5 154.76 2.15
BigSmall Sum Small-To-Big 2.37 5.96 2.70 0.89 3.37 4.99 16.48 0.19 40.6 61.4 171.60 2.15

Table 7. Comparison of BigSmall With Gray Scale Big Input.
Best results of each row are in bold.

Metrics BigSmall w/ Gray Scale
Big Pathway Input

BigSmall
(Ours)

Heart Rate MAE 2.29 2.38
RMSE 5.75 6.00
MAPE 2.59 2.71

ρ 0.89 0.89

Resp. Rate MAE 3.62 3.39
RMSE 5.26 5.00
MAPE 17.63 16.65

ρ 0.18 0.21

AU (F1) AU01 19.6 22.1
AU02 18.1 18.6
AU04 11.5 12.6
AU06 65.0 70.2
AU07 71.3 73.3
AU10 71.2 74.7
AU12 68.9 73.6
AU14 68.0 67.7
AU15 25.2 26.2
AU17 24.8 29.6
AU23 35.1 38.3
AU24 8.7 12.1

AU (Avg) F1 40.6 43.3
Acc. (%) 61.3 67.4

tially upsample the Small branch feature map to match the
dimensions of the Big branch, and then concatenate these
features with the Big feature map (along the channel di-
mension). Bi-direction lateral connections utilize both the
aforementioned Big-to-Small and Small-to-Big lateral con-
nections.

We find that all methods of high-level information shar-
ing benefit the PPG task. AU performance benefits from
Big-to-Small fusion, but regresses considerably with Small-
to-Big fusion. Respiration benefits from Small-to-Big fu-
sion, but regresses considerably with Big-to-Small fusion.
This suggests that though high level information sharing
may benefit all tasks independently, the high level features
of interest differ between respiration and AU, preventing a
unified lateral connection system that benefits all tasks si-
multaneously.

Figure 6. Consecutive Frames N vs Avg. 12 AU F1. These 12
AU average F1 scores, from the Big branch model trained with a
number of different consecutive frames N , shows that AU perfor-
mance degrades as the N increases.

B.5. Gray Scale Big Input

Some previous works [21] train AU models using gray
scale images which preserve texture information and reduce
the number parameters which may cause overfitting. We
find that using gray scale Big inputs results in reduced per-
formance for BigSmall. This is likely as the Big branch of
BigSmall is able to leverage color-channel-dependent vari-
ations embedded in the 3-color-channel Small input differ-
ence frames. Results in Table 7.

C. Example Waveforms

Fig. 7 illustrates additional PPG and Respiration pre-
dictions from BigSmall plotted against the sensor ground
truth. NOTE, PPG predictions are plotted against the Blood
Pressure waveform (BP4D+ pulse ground truth). This
accounts for the similar waveform frequency content but
phase-misalignment. Similar animated waveform plots may
be found in our video figure.
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Figure 7. Sample PPG and Respiration Waveforms. BigSmall PPG ad respiration waveforms plotted against the sensor ground truth.
Note that PPG predictions are plotted again the blood pressure waveform, the BP4D+ heart-signal ground truth.

D. Preprocessing

D.1. Video Frame Inputs

Raw and normalized difference inputs are processed to
match the preprocessing of [25]. The described transforms
are performed per-video before the videos are chunked.
Before each frame is transformed, the frames are center
cropped, along the vertical axis, in order to produce square
frames.

Small Inputs (Normalized Difference Frames). Nor-
malized difference frames are derived by taking the dif-
ference of a frame k[n] and a frame k[n + 1] such that
kdiffnorm[n] = (k[n+1]−k[n])/(k[n+1]+k[n]). This de-
nominator normalization factor helps to reduce dependence
on per-frame-skin brightness and appearance [25]. The re-
sulting frames are mean and standard deviation standard-
ized. These frames are then downsampled to 9x9px.

Big Input (Raw Frames). The raw frames are mean
and standard deviation standardized. The resulting frames
are then downsampled to 144x144px.

D.2. Data Labels

Label Preparation. Following previous work [25, 49],
the respiration and PPG labels are difference noraml-
ized, to match the format of the Small branch difference
frame inputs. This is done such that for a sample k[n],
kdiffnorm[n] = (k[n+ 1]− k[n])/(k[n+ 1] + k[n]). The
resulting samples are mean and standard deviation standard-
ized. AU labels are not difference normalized as the spatial
branch (Big branch) inputs are not difference normalized.

PPG Labels. Early explorations indicated an ineptitude
of BigSmall to effectively learn the PPG signal when trained

on blood pressure waveform labels (the BP4D+ ground
truth heart signal). Thus, we train the PPG task using
“pseudo” PPG labels derived using the Plane Orthogonal-
to-Skin (POS) [45] method. These POS-derived signals
are then aggressively filtered using a 2nd Order Butter-
worth filter around the normal heart-rate frequency of [0.75,
2.5] Hz. The amplitude of the resulting signals are then
normalized using the Hilbert envelope. Although these
“psuedo” labels are used to train, all models are still eval-
uated against BP4D+’s ground truth blood pressure wave-
form which shares the PPG signal’s heart rate frequency.

AU Labels. BP4D+ has labels for 34 AU activations. We
choose to use 12 of these AUs for training and evaluation
based off previously published literature [21] and as these
12 AUs have sufficient positive occurrences in the dataset.
Some AU activations in both BP4D+ and DISFA are labeled
as intensities [0-5], where 0 is no activation and 5 is max-
imum activation. Following previously published work we
train and test using binarized AU activation (0 for inactive,
1 for activate regardless of intensity).

Data Splits. We split the BP4D+ dataset into the fol-
lowing 3 subject-independent splits, used for cross valida-
tion. Note that all splits have approximately equal partici-
pants, and approximately equal subjects of each biological
sex. “F” denotes female subjects, while “M” denotes male
subjects.

Split 1: F003, F004, F005, F009, F017, F022, F028,
F029, F031, F032, F033, F038, F044, F047, F048, F052,
F053, F055, F061, F063, F067, F068, F074, F075, F076,
F081, M003, M005, M006, M009, M012, M019, M025,
M026, M031, M036, M037, M040, M046, M047, M049,
M051, M054, M056



Split 2: F001, F002, F008, F018, F021, F025, F026,
F035, F036, F037, F039, F040, F041, F042, F046, F049,
F057, F058, F060, F062, F064, F066, F070, F071, F072,
F073, F077, M001, M002, M007, M013, M014, M022,
M023, M024, M027, M029, M030, M034, M035, M041,
M042, M043, M048, M055

Split 3: F078, M008, F080, M011, F014, M033, F020,
M010, M052, M057, M017, M038, F030, F051, M032,
F013, F011, F015, F016, F065, M015, M020, F007, F050,
F010, M021, F012, F045, F059, M045, F023, M004, F069,
M044, M053, M018, M058, M050, F019, F024, F034,
F079, M039, F056, F054, F027, F043

E. Postprocessing

E.1. Heart and Respiration Rate From Waveform

PPG and respiration waveform labels are difference nor-
malized to match the temporal branch inputs. Thus predic-
tions are also in a difference normalized form. PPG and
respiration waveforms are derived from the difference nor-
malized waveforms by taking the cumulative sum of the
waveform at every sample and then detrending the result-
ing vector.

Signal rates are then derived by applying a 2nd Order
Butterworth filter with cut-off frequencies of [0.75, 2.5] Hz
for heart rate and [0.08, 0.5] Hz for respiration rate to the
signal waveforms and using a peak detection algorithm on
the Fourier spectrum of the filtered signals.

E.2. AU Model Prediction Thresholding

AU outputs from the final model layer are passed through
a sigmoid function to bound the output (0,1). We use a
threshold of 0.5 to binarize the output of the sigmoid such
that AU sigmoid output < 0.5 = 0 (inactive) and AU sig-
moid output ≥ 0.5 = 1 (active).

E.3. Heart and Respiration Rate Evaluation Met-
rics

Mean Average Error (MAE). The MAE as defined be-
tween the predicted signal rate Rpred and the ground truth
signal rate Rgt for a total of T instances:

MAE =
1

T

T∑
t=1

|Rgt −Rpred|

Root Mean Square Error (RMSE). The RMSE as
defined between the predicted signal rate Rpred and the
ground truth signal rate Rgt for a total of T instances:

RMSE =

√√√√ 1

T

T∑
t=1

(Rgt −Rpred)2

Mean Average Percent Error (MAPE). The MAPE as
defined between the predicted signal rate Rpred and the
ground truth signal rate Rgt for a total of T instances:

MAE =
1

T

T∑
t=1

∣∣∣∣Rgt −Rpred

Rgt

∣∣∣∣
Pearson Correlation (ρ). The Pearson correlation as

defined between the predicted signal rate Rpred and the
ground truth signal rate Rgt for a total of T instances, and
R the mean of R over T instances:

ρ =

∑T
t=1

(
Rgt.t −Rgt

)(
Rpred.t −Rpred

)
√(∑T

t=1 Rgt.t −Rgt

)2(∑T
t=1 Rpred.t −Rpred

)2

E.4. AU Evaluation Metrics

F1. The F1 as defined between a list of predictions and
ground truth labels, where TP is the true positive count,
FP is the false positive count, and FN is the false negative
count:

100 ∗ 2TP

2TP + FP + FN

Accuracy (%). The accuracy as defined between a list
of predictions and ground truth labels, where TP is the true
positive count, TN is the true negative count FP is the false
positive count, and FN is the false negative count:

100 ∗ TP + TN

TP + TN + FP + FN

F. SOTA Methods and Dataset Descriptions
F.1. Temporal Task Baselines

An implementation of these rPPG baseline methods may
be found in [27].

MTTS-CAN [25]. An efficient dual pathway convolu-
tional neural network for PPG and respiration multitask-
ing. The network utilizes attention from the “Appearance
Branch” which models the location of skin pixels, to assist
the “Motion Branch” which models changes in skin color
correlated to the pulse signal. The “Motion Branch” makes
use of Temporal Shift Modules [24] to share information
between time samples.

DeepPhys [4]. A dual pathway convolutional neural net-
work for PPG estimation. The network utilizes attention
from the “Appearance Branch” which models the location
of skin pixels, to assist the “Motion Branch” which models
changes in skin color correlated to the pulse signal.

POS [45]. A signal processing method that utilizes the
individual color channel (R, G, B) signals. These signals
are split into overlapping window segments. For each win-
dow segment each color channel signal is normalized by its



mean. The PPG signal for that window is then calculated
through a relationship between the original color channel
signals and mean signals. The final PPG signal is recon-
structed by piecing together the overlapping window seg-
ments.

CHROM [11]. A signal processing method that utilizes
chrominance signals to derive the PPG signal. The method
filters the individual color channel (R, G, B) signals around
the normal heart rate frequency, and then windows the sig-
nals into overlapping segments. A relationship between
the color-channel-based signals is then used to derive the
PPG signal windows. The resulting segments are further
Hanning-windowed and pieced together using an overlap-
ping add technique to obtain the final PPG signal.

F.2. Spatial Task Baselines

DRML [21]. Deep Region and Multi-Label Learning
is a convolutional network that utilizes region learning to
better isolate regions of the face in which different AUs ac-
tivate. The use of a “region layer” helps the model learn
spatial information regarding individual AU’s without in-
curring the computational cost of needing to isolate indi-
vidual pixels as is done by [42].

AlexNet [22]. A convolutional network used to base-
line image classification tasks. It consists of a number of
convolutional and pooling layers before a number of fully
connected layers.

F.3. PPG Datasets

PURE [41]. A dataset comprised of RGB video record-
ings (30fps) from 10 participants (2 female, 8 male). Par-
ticipants are seated and front lit with ambient light from
a window. Each subject participates in 6 recordings, each
with the individual performing different motion tasks. The
dataset contains ground truth, contact-sensor-based, PPG
and SpO2 measurements.

UBFC [2]. A dataset comprised of RGB video record-
ings (30fps). Participants are seated and lit with ambient
light. The dataset contains ground truth, contact-sensor-
based, PPG measurements.

F.4. AU Datasets

DISFA [31]. A dataset comprised of 4 minutes of RGB
video recordings (20fps) per 27 subjects. Each frame of the
dataset is manually FACS coded for 12 AUs (AU1, AU2,
AU4, AU5, AU6, AU9, AU12, AU15, AU17, AU20, AU25,
AU26) with an intensity measure [0-5].

G. Broader Impacts and Future Work
Application To Other Domains. Though BigSmall is

evaluated on physiological sensing tasks, we believe that
such a model may allow multitasking in other domains in

which modeling disparate spatiotemporal signals may be
of interest. We hypothesize that a BigSmall-esc. model
may show significant benefit in situations where the mod-
eled signals are more related (shared task-gradient direc-
tion) than those presented in this work.

COVID-19. The COVID-19 pandemic has catalyzed in-
terest in remote medicine and health sensing via ubiquitous
technologies (e.g., a mobile phone) [40, 39]. However, the
sensitive nature of biometrics often dictates that these mod-
els run on-device. Mobile sensing requires the use of ef-
ficient networks that can be run in near-real-time without
significant computational limitations.

Future Work. Future work entails the evaluation of
BigSmall on resource constrained platforms such as mobile
devices and embedded processors. We also plan to train
BigSmall on videos with dynamic backgrounds (as BP4D+
has blank background), and utilize additional data augmen-
tation techniques to help build a more robust embedding.
Finally, we intend to explore the use of different model
backbones for both the Big and Small branches.
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